- Amateur Radio (Ham Radio) Community

Call Search

New to Ham Radio?
My Profile

Friends Remembered
Survey Question

DX Cluster Spots

Ham Exams
Ham Links
List Archives
News Articles
Product Reviews
QSL Managers

Site Info
eHam Help (FAQ)
Support the site
The eHam Team
Advertising Info
Vision Statement

[Articles Home]  [Add Article]  

Inexpensive 17-Meter Vertical

from K5DVW on November 28, 2016
View comments about this article!

"Editor's Note: Due to the popularity of some of eHam's older articles, many of which you may not have read, the team has decided to rerun some of the best articles that we have received since eHam's inception. These articles will be reprinted to add to the quality of eHam's content and in a show of appreciation to the authors of these articles." This article was originally published on: 02/26/2006

A low cost, low profile DX antenna

We hams love our antennas. So much so that it's not unusual to see an amateur erect a 100 ft tower and sprinkle it with beams, and wires. Unfortunately for most of us, we either don't have the space, funds, or accommodating neighbors for such a system. But, all isn't lost when it comes to chasing DX. This article focuses on one way to accomplish a decent inexpensive antenna that is capable of 17 meter DX.

It's well known that a properly installed vertical antenna has low angle radiation to the horizon, the favored direction of DX propagation. It's also well known that a horizontal dipole will have excellent low angle radiation too, but only if it's high enough off the ground. One half wavelength or higher is the target for a DX oriented dipole. On the higher HF frequencies, that's not usually a big issue as � wavelength on 10m is only 15 feet. But, a horizontal dipole will need three tall support structures spaced at proper horizontal distance and may not be so neighbor friendly. Enter the vertical.

I've used a ground mounted HF vertical for years with good success. The secret to a good ground mounted vertical is to put many, many radial wires from the feed point along the ground like spokes of a bicycle wheel. This has the effect of reducing the ground loss in the near field of the antenna by shielding the antenna's image from lossy soil. These ground losses can be significant and reduce a vertical to little more than a dummy load if they are not reduced. On the order of fifteen 0.1 wavelength radials are the absolute bare minimum if you don't want to lose a lot of signal to the earth below. Hardcore vertical users put upwards of 100 half-wavelength radials to squeeze the last dB out of their installation. Still, I like verticals. My main HF antenna is a popular commercial trapped model and it doesn't cover 160m, 60m or the higher WARC bands (17m, 12m). So, I set out to develop a simple antenna to fill in the gaps in my HF coverage. I wanted to focus on the higher HF band coverage for the time being, leaving the low band challenge for later. Specifically I wanted to target 17m.

Fortunately there is an alternative to good vertical performance without all those radials. An often used technique to making a vertical work without a massive radial system is to elevate the entire system, radials and all, off the lossy ground.. As little as 0.1 wavelength separation from earth does wonders for efficiency. In fact, at such a height or higher, the number of radials required can be reduced significantly without much performance degradation compared to a ground mounted system with 100 radials. Believe it or not, at sufficient height, reasonable performance can be had with only two tuned radials! The height target for good ground decoupling is greater than 0.1 wavelength high and at 17m that's only a little higher than 5 ft off the ground. That's to say that the ground radials must be 5 feet or higher off the ground at their lowest point.

With the idea to develop an elevated vertical for 17m that is not too complex or expensive as my goal, I started reasoning through my options. If you are anything like me, you've probably tried HF mobile before and you may already have the main piece to build this project; a hamstick antenna. The hamstick is a mobile style HF antenna for single band HF coverage. The price is right and every hamfest I've been to has a vendor selling them inexpensively. The hamstick construction is that of a bottom loading coil section wound on a � inch fiberglass tube with a resonating whip above. The total length is about 7 feet and the base is a 3/8 inch 24 TPI (turns per inch) bolt with male threads. These antennas are built to take abuse, so they're not fragile and a good candidate for outdoor use.

Now I had the idea that I could build an elevated 17m vertical using a hamstick as the main element, it was time to design and test it.


PVC drain pipe is a wonderful material to homebrew with. It's lightweight, strong, and inexpensive, plus, your local hardware store has plenty of it. It just so happens that the cap for the 1 1/2” drain pipe is flat on the top which makes for a great mounting surface, the smaller pipe caps are curved and would be difficult to use without sanding them flat. I started the project by obtaining 10' and 5' sections of SCH 40 PVC, 1 1/2” drain pipe, a pipe coupling, and a cap. I also picked up a 1” long 3/8” 24 TPI bolt, a couple of washers, a �” 24 TPI threaded coupler and an electrical eyelet large enough to fit over the bolt. For feed line I decided on a 15' length of RG58 with a PL256 connector on one end. Any length is fine as long as it reaches your radio. The radial system is made using #14 solid copper wire which can also be found at the hardware store. Any gauge of wire is fine, but the thinner stuff can be fragile. Be sure to have at least 30' of it on hand for this project. It doesn't matter if it's insulated or not. Figure one is a diagram of the cap and feed point.

0x01 graphic

Figure 1. PVC pipe cap and feed point detail

The PVC cap I found had raised lettering on the top of it which disturbed the flatness of the surface, so I first sanded it down flat using sandpaper. I then drilled a 7/16” hole in the center of the cap. I also drilled two 1/8” holes for the radial wires on opposite sides of the top of the PVC cap about �” down and a 3/8” hole about 1ft down from the top on the 5' PVC pipe to route out the coax feed line along the outside of the pipe.

The coax feed line is prepared by placing the free end through the hole in the side of the 5' PVC pipe section and bringing it out the top open end. Strip the jacket insulation off the free end about 1.5” and separate the shield from the center conductor. Strip the center conductor insulation back about �”. The electrical eyelet should then be soldered on to the center conductor.

Next, prepare the feed point by inserting a 1/2 foot section of the stripped #14 wire through the two drilled radial holes in the pipe cap. The idea is to connect the radials later, but to have a continuous length of wire running through the pipe cap for mechanical rigidity. Solder the radial wire inside the pipe cap to the shield of the coax cable. Be sure to not let the wire get too hot as it will melt the PVC material.

Insert the 1” long 3/8” 24 TPI bolt through the eyelet on the center conductor, through a washer, then into the hole in the pipe cap. The head of the bolt should be inside the pipe cap with the threaded end sticking out the top. Place a washer on the bolt on the outside of the cap and using a wrench, tighten the spacer onto the bolt. It's a good idea to wrap the radial wire with electrical tape where it is soldered to the coax shield so that it doesn't contact the bolt head. Place the pipe cap onto the 5' section of PVC pipe, and your antenna feed point is now finished! Figure 2.

0x01 graphic

Figure 2. Pipe cap assembly with radial pig tails

I added some RTV to the holes where the radial wire and feedline comes though the pipe cap but I did not glue the pipe cap onto the pipe. I don't think it's necessary to use glue since the downward weight and pressure of the antenna and radial wires should hold it in place and it's a snug fit. Tie wraps are a good idea for keeping the feedline from blowing around in the wind.

With the remaining #14 wire, it's time to make radials. Since we're just using two, cut them to the appropriate length for the band your hamstick is designed for [L=243/(MHz)]. In my case the radial lengths for 17m are 13.5 feet each. Strip back and solder the radials onto the wires which come out of the pipe cap again being careful not to melt the PVC. The 5' section of pipe can now be connected to the 10' section by use of the pipe butt coupler. Now you have your mast. Again, I don't see the requirement to cement them together, but you certainly can. You can even paint the pipe. Next, screw the hamstick onto the 24 TPI coupler. I decided to use the coupler for two reasons. One, the thread on the antenna didn't seem long enough to go thru the pipe cap and washer and, I could change antennas without disturbing the feed point connection inside the pipe cape. Your antenna is now complete! Figure 3.

0x01 graphic

Figure 3. Complete antenna hidden by a tree.


The hardest part of this project is deciding where to put the antenna. A site clear of metal obstructions and far from the house is best. A bonus would be if it could be hidden from view. Wooden fence posts make an excellent mount and the radials can be anchored to the fence itself. I decided to strap my antenna to a short tree and let the radiating element protrude above the tree top. My radials are anchored to a nearby wooden privacy fence. In this configuration, I didn't need to guy the mast since the tree and radials did that for me. For best results and a better SWR match, the radials should be angled down from the feed point and kept symmetrical. Angles from 30 to 60 degrees provide a good match, with 45 degrees usually being optimum. Of course, you will need to adjust the whip on the hamstick to tune to lowest SWR. My SWR plotted over 17m is shown. Due to the low feedpoint impedance of a shortened antenna, you can expect SWR to run a bit higher than with a full sized version. In other words, don't expect to find a 1:1 SWR match.


Always curious how my antenna designs perform, I like to simulate them. Using NEC-2, I simulated a wire structure representing my antenna with the feedpoint 15 feet over average ground. I used distributed loading to approximate the bottom loading section of the antenna. Since I couldn't measure the value of the loading coil directly, I played around with the simulation values and found where it would resonate at 18.1 MHz with a 3.5 foot whip by adjusting the loading inductor value. I then noted the simulated feed point resistance at resonance in the simulation was lower than the 35 Ohms I measured with my impedance bridge, so I added resistive losses to my loading coil until the simulation predicted a feed point impedance of 35 ohms. The final values for the distributed loading coil are 1 ohm in series with 0.42 uH. My simulated SWR curve matched very closely the measured data.. NEC predicted that the maximum gain direction is at a low elevation angle with approximately 0 dBi. Recall that a dipole should have about 2.4 dBi, so it's reasonable to expect we're losing a bit of gain over theory with this setup, and this simulation doesn't include any effects of the transmission line, or unbalanced radial current, but it does show a trend. It shows that most of the RF energy is at low angles leaving this antenna! Just what we want for DX. Figure 4

0x01 graphic

Figure 4. NEC simulated pattern

0x01 graphic

Figure 5. Measured SWR


Now I'll be the first to admit that this is a compromise antenna and it's not meant to perform like a tower and beam or a high dipole. There are plenty of discussions around about how inefficient verticals can be, and especially bottom loaded verticals. On the other hand, you'll see some of the best low band DXers using verticals, so they can and do work very well with low angle skip. By elevating the radials from ground as in this design, one major source of loss has been reduced, the dirt below. The loss of the loading section is still there, but I think it can be tolerated; after all, thousands of mobile stations make excellent contacts with these same antennas. The elevated vertical explained here should operate certainly as well as if not better than a mobile installation. So, how has mine worked?

As for on the air results, within the first 30 minutes of operation I made contacts to Portugal, Ireland, Argentina and Azores from my central US location. I'd say the low angle skip is definitely being worked!


The benefits of the antenna that I have presented here are a simple construction technique, easy match to 50 ohm cable, good low angle omni-directional performance, portability and ability to install most anywhere. Drawbacks are certainly the lossy nature of a short, loaded vertical when compared to a full sized vertical antenna, or a dipole up � wave length.

Please treat this article as only one suggestion and expand on the idea. Try different mounting locations, modify the construction techniques and play with the radial orientation. Try it camping or at your next field event. Experiment and have fun! Hamsticks are available for any HF ham band so it's possible to go lower than 20m with this idea. One note of concern, however, is that going below 40m in frequency may reach a point where the loading coil losses become very large, but the low angle radiation pattern will be the same. If anyone tries it, please write me with the details! Sixty meters anyone?

Member Comments:
This article has expired. No more comments may be added.
Inexpensive 17-Meter Vertical  
by K6AER on November 28, 2016 Mail this to a friend!
Excellent article, very well done. I would love to see more articles such as this one which can help new hams get on the air. Easy to follow, construction pictures and supporting data make the article a winner.
RE: Inexpensive 17-Meter Vertical  
by VE3CUI on November 28, 2016 Mail this to a friend!
"Excellent article, very well done" you say?

Yet, the author of this piece writes that "...reasonable performance can be had with only two tuned radials"

HmmmI don't recall you, or others, agreeing with that exact same sorta statement about MY GP antenna with its two ground radials in the previous articlewhat's so very suddenly changed, I wonder?
RE: Inexpensive 17-Meter Vertical  
by K6AER on November 28, 2016 Mail this to a friend!
Define reasonable. He has said that the performance will be less than a full 1/4 wave ground plane antenna with the use of a ham stick. With the use of modeling and an antenna analyzer the author has done some actual homework.
RE: Inexpensive 17-Meter Vertical  
by VE3CUI on November 28, 2016 Mail this to a friend!
"...Define reasonable"

You just did, yourself, with the words, "excellent - very well done" Yet just 4 short days ago, when I stated that my GP here used 2 counterpoise wires, you were quick to criticize with, "Your antenna needs a better counterpoise system"

Somehow, by this current essayist stating that he used modern-day antenna modelling and an antenna analyzer, the use of 2 radials suddenly jumps miraculously from being insufficient, to excellent

OMG, how DID we ever get along in those by-gone pre-historic days of yore, using simple monimatches and algebraic calculations performed in long-hand on paper with lead pencils?!
RE: Inexpensive 17-Meter Vertical  
by K6AER on November 28, 2016 Mail this to a friend!
I might add that even with two radials the antenna closer to a 50 ohm feed but the angle of radiation in the direction of no radials will be very high (30 degrees or higher). At a minimum for a low angle of radiation, in all 360 degrees, you should have a minimum of 8 evenly spaced radials. It is the capacitance from the center conductor radiator to the ground plane radials that brings the E plane pattern down. Even a 5/8 radiator over an infinite ground plane has a take off angle of over 18 degrees.
RE: Inexpensive 17-Meter Vertical  
by K6AER on November 28, 2016 Mail this to a friend!
Just for clarity...I said the article was well done. Not the use of two radials.
Inexpensive 17-Meter Vertical  
by K9JCS on November 28, 2016 Mail this to a friend!
This article gave me an idea. If the radial pigtails were replaced with permanent threaded bolts this system could easily be made to work on other bands simply by replacing the ham stick with different frequency ham stick. Change the radials by using wires cut to the correct length and using a ring terminal to attach to the radial bolts. I haven't done the math, but this would probably work OK for 20 mtrs and up.
RE: Inexpensive 17-Meter Vertical  
by K8AI on November 29, 2016 Mail this to a friend!
It sounded like K6AER was complementing the article to me too.

I wonder if the problem that you're having is that he only used two radials (?). It looks like this antenna is an elevated-radial vertical antenna instead of a ground-mounted radial vertical - that there might be the confusion.
RE: Inexpensive 17-Meter Vertical  
by KG4RUL on November 30, 2016 Mail this to a friend!
As another commented, adding bolts (and wingnuts) vs pigtails would make changing radials easier.

To improve on the design, we could add a third radial point and a plate to accommodate three "hamsticks" splayed out at an angle (New-Tronics Multi-Band Adapter Model VP-1). If we attached three, tuned radials (tuned to match each of the three "hamsticks") to each radial point, we now have a tri-band antenna. The longest radial on each point could be extended with a non-conducting cord to provide guying. The other two radial on each point would be spaced below the long radial with non-conducting spacers.
Inexpensive 17-Meter Vertical  
by AC8YJ on November 30, 2016 Mail this to a friend!
I enjoyed this posting, it is very well written and informative, thank you for taking the time to to present this. I have a commercial vertical with elevated radials myself and it works exceedingly well, 6 radials 6' off the ground. 73
RE: Inexpensive 17-Meter Vertical  
by AD5VM on December 1, 2016 Mail this to a friend!
2 properly elevated radials = a whole truckload of wire on the ground.
Elevated Ground Plane Antenna Radials  
by VE3CUI on December 1, 2016 Mail this to a friend!
A friend of mine from my 160-meter days sent me an e-mail detailing the incremental detrimental effects --- as were analyzed by him on some contraption, or other --- of reducing ground radials beneath a vertical that he had for Top Band

Now, the radials in his case consisted of 1/4-wave long insulated wires laid atop the ground, fanning away from the base of his vertical element.

He said that the effects were, for argument's sake, essentially "flat-lined," until he reached the "magic" number of 4 radial wires. He established 4 radials as being the absolute MINIMUM with such antennas

RE: Elevated Ground Plane Antenna Radials  
by G3SEA on December 1, 2016 Mail this to a friend!

17 m ( especially the cw end ) has been THE Band lately :)

Inexpensive 17-Meter Vertical  
by VE3FMC on December 2, 2016 Mail this to a friend!
If you want to build a cheaper vertical go to a golf store and buy one of those telescopic golf ball retrievers. They come in different lengths.

I have used them in the past, I collected broken ones from the golf club I belong to. The ball retrievers break off and they end up in the garbage.

I extend them to the length I need, then I put some self tapping metal screws into the joints to make sure there is a good electrical connection.

Mount them on an insulated mount, add radials and good to go.

I had a 12 meter version up for a winter and it worked well. I had it raised off the ground 8 feet, sloped the radials down.
RE: Inexpensive 17-Meter Vertical  
by W3HKK on December 31, 2016 Mail this to a friend!
Cheap ( $10-$20 ) black fiberglas telescoping fishing poles up to 25 ft long can be had. They are flexible, super-lightweight and wind and uv durable. Mine have been up for 6 years and still going strong. Never break or blow down ( so far at least.) And if they do, its no big deal to put them back up again.

I tape up the base of the pole and insert snugly into the pvc mast. Add a bolt thru the mast to limit downward travel of the fiberglas mast.

Set the mast and radials length to a full qtr wave on the band of your choice. Use electrical tape to stop the fishing pole joints from loosening, then insert into a suitable length of pvc and sit the antenna on a short stake. I use 3 or 4 qtr wave wires as radials/guy wires. Angle not critical.

Run coax up the pvc mast, solder the center conductor to the radiator wire ( also electrical taped to the fiberglas pole.) Always tape the soldered joint with electrical tape to keep the solder from uv break down. I use a screwed aluminum ground buss bar to connect the outer coax braid to the radials, and then tape it to the mast. ( Use duct tape for strength, then cover it with electrical tape to prevent the duct tape from disintegrating. It lasts many years.) SWRs across the chosen band is below 1.3:1 if youre careful.

Wind the coax into a coil of 6-8 turns to prevent rf from traveling along the outer braid back to the shack.

DXCC here you come. Routinely break pile-ups. Ive made DXCC on 40-30-20-17-15-12-10m with such antennas, in no-time.

Inexpensive 17-Meter Vertical  
by AA7LX on January 3, 2017 Mail this to a friend!
Thank You, eHam for republishing this Article! I must print it out for study and perhaps even for an upcoming Antenna project! '73 George, AA7LX
RE: Inexpensive 17-Meter Vertical  
by K1WJ on January 6, 2017 Mail this to a friend!
Thanks for article, For 17m I use an MFJ-1977,Spring and 9 inch buddie pole extender tube on 6ft MFJ triopod,with K40 mount with only a single elevated 1/4 wave radial.Good for HOA or portable op's. 73 K1WJ
Email Subscription
You are not subscribed to discussions on this article.

My Subscriptions
Subscriptions Help

Related News & Articles
Bringing the K6AER HF J-Pole to Life
A Radial Plate for Cheapskates

Other Antennas Articles
Bringing the K6AER HF J-Pole to Life